
Chapter Four 

The Linear Harmonic Oscillator 

6.1 The Time-Independent Schrödinger Equation and its Solution 

The force acting on a particle executing linear harmonic oscillation can be written 

as 

𝐹 = −𝑘𝑥 

where x is the displacement from the equilibrium position and k is called the force 

constant. The potential energy corresponding to this force is 

𝑉(𝑥) =
1

2
𝑘𝑥2 

If 𝜔 is the “classical” angular frequency of the oscillator and m is its mass, then 

 

The time-independent Schrödinger equation for the harmonic oscillator is 

 

It is convenient to simplify this equation by introducing the dimensionless 

eigenvalue 

𝜆 =
2𝐸

ℏ𝜔
 

and the dimensionless variable  𝑦 = 𝛼𝑥 

…(6.1) 

 

…(6.2) 

 

…(6.3) 

 

…(6.5) 

 

…(6.4) 

 

…(6.7) 

 

…(6.6) 

 



Where      𝛼 = (
𝑚𝜔

ℏ
)

1

2 
  

we have  
𝑑𝑦

𝑑𝑥
= 𝛼 

𝑑𝜓

𝑑𝑥
=

𝑑𝜓

𝑑𝑦

𝑑𝑦

𝑑𝑥
= 𝛼

𝑑𝜓

𝑑𝑥
 

𝑑2𝜓

𝑑𝑥2
=

𝑑

𝑑𝑦
(

𝑑𝜓

𝑑𝑥
)

𝑑𝑦

𝑑𝑥
= 𝛼2

𝑑2𝜓

𝑑𝑦2
=

𝑚𝜔

ℏ

𝑑2𝜓

𝑑𝑦2
 

Substituting in (6.5), 

𝑚𝜔

ℏ
[
𝑑2𝜓(𝑦)

𝑑𝑦2
+ (𝜆 − 𝑦2)𝜓(𝑦)] = 0 

𝑑2𝜓(𝑦)

𝑑𝑦2
+ (𝜆 − 𝑦2)𝜓(𝑦) = 0 

As a first step towards finding acceptable solutions of this equation, we first 

examine the behavior of 𝜓 in the asymptotic region |𝑦| → ∞ In this limit (6.9) 

reduces to 

𝑑2𝜓(𝑦)

𝑑𝑦2
− 𝑦2𝜓(𝑦) = 0 

It can be easily verified that for large values of |𝑦| the functions 

𝜓(𝑦) = 𝑦𝑛𝑒±
𝑦2

2  

n being any constant, satisfy Equation (6.10) so far as the leading terms, which are 

of order 𝑦2𝜓(𝑦), are concerned.  

Since the wave function must be bounded everywhere, the positive sign in the 

exponent is not acceptable. This suggests that we should look for exact solution to 

(6.9) having the form 

𝜓(𝑦) = 𝑒−
𝑦2

2 𝐻(𝑦) 

where 𝐻(𝑦) are functions which do not affect the required asymptotic behavior of 

𝜓(𝑦). Substituting (6.11) into (6.9) we find that 𝐻(𝑦)  satisfy the Hermite 

equation: 

…(6.8) 

 

…(6.9) 

 

…(6.10) 

 

…(6.11) 

 

…(6.12) 

 



𝑑2𝐻(𝑦)

𝑑𝑦2
− 2𝑦

𝑑𝐻(𝑦)

𝑑𝑦
+ (𝜆 − 1)𝐻(𝑦) = 0 

This equation can be solved by assuming a power series of the form 

𝐻(𝑦) = ∑ 𝑎𝑘𝑦𝑘 = 𝑎0

∞

𝑘=0

+ 𝑎1𝑦 + 𝑎2𝑦2 + ⋯ 

This gives 

𝑑𝐻(𝑦)

𝑑𝑦
= ∑ 𝑘𝑎𝑘𝑦𝑘−1

∞

𝑘=1

            𝑎𝑛𝑑               
𝑑2𝐻(𝑦)

𝑑𝑦2
= ∑ 𝑘(𝑘 − 1)𝑎𝑘𝑦𝑘−2

∞

𝑘=2

 

  

Substituting in Equation (6.12), 

∑ 𝑘(𝑘 − 1)𝑎𝑘𝑦𝑘−2

∞

𝑘=2

− 2 ∑ 𝑘𝑎𝑘𝑦𝑘−1

∞

𝑘=1

+ (𝜆 − 1) ∑ 𝑎𝑘𝑦𝑘

∞

𝑘=0

= 0 

Or 

∑ 𝑘(𝑘 − 1)𝑎𝑘𝑦𝑘−2

𝑘

− ∑(2𝑘 − 𝜆 + 1)𝑎𝑘𝑦𝑘

𝑘

= 0 

For this equation to be satisfied identically for all 𝑦, the coefficient of each power 

of 𝑦 must vanish. Setting the coefficient of 𝑦𝑘 equal to zero, we obtain 

(𝑘 + 2)(𝑘 + 1)𝑎𝑘+2 − (2𝑘 + 1 − 𝜆)𝑎𝑘 = 0 

𝑎𝑘+2 =
2𝑘 + 1 − 𝜆

(𝑘 + 2)(𝑘 + 1)
𝑎𝑘  ,                𝑘 = 0, 1, 2, … 

This equation is called the recurrence relation. It shows that all the coefficients 

can be determined from 𝑎0 and 𝑎1. 

The general solution of (6.12) has two adjustable parameters. It can be written as 

the sum of two series, one containing only even powers and the other only odd 

powers: 

𝐻(𝑦) = (𝑎0 + 𝑎2𝑦2 + 𝑎4𝑦4 + ⋯ ) + (𝑎1𝑦 + 𝑎3𝑦3 + 𝑎5𝑦5 + ⋯ ) 

…(6.13) 

 

…(6.14) 

 

…(6.15) 

 



Let us now look at the behavior of this series as 𝑦 → ∞. It is clear that for large 𝑦, 

the higher (large k) terms in the series will dominate. Therefore, we examine the 

behavior of this series for large k. We have, from (6.14), 

𝑎𝑘+2

𝑎𝑘
→

2

𝑘
              for large k 

Let us now consider the expansion of the function 𝑒𝑦2
: 

𝑒𝑦2
= ∑ 𝑏𝑘𝑦𝑘

𝑘=0,2,4,…

,                𝑏𝑘 =
1

(𝑘 2⁄ )!
   

The ratio of two consecutive terms is 

𝑏𝑘+2

𝑏𝑘
=

(𝑘 2⁄ )!

[(𝑘 + 2) 2⁄ ]!
=

2

𝑘 + 2
→

2

𝑘
             for large k 

Equations (6.16) and (6.17) show that for large k, 𝐻(𝑦) behaves as 𝑒𝑦2
.  

Thus, (6.11) shows that for large k, 

𝜓(𝑦) ≈ 𝑒𝑦2 2⁄  

which diverges as 𝑦 → ∞. Therefore, in order to obtain a physically acceptable 

wave function it is necessary that the series is terminated to a polynomial. The 

recursion relation (6.14) tells us that this can happen only when 𝜆 is an odd integer: 

𝜆 = 2𝑛 + 1,                               𝑛 = 0, 1, 2, … 

In that case one of the two series will terminate at 𝑘 = 𝑛. The other series is 

eliminated by setting 𝑎0 = 0 if n is odd and 𝑎1 = 0  if n is even. In either case, 

Equations (6.6) and (6.19) yield the energy eigenvalues 

𝐸𝑛 = (𝑛 +
1

2
) ℏ𝜔                𝑛 = 0, 1, 2, … 

We have labelled the energy eigenvalues by the index n which indicates the degree 

of the polynomial appearing in the solution. 

Note that: 

• The infinite sequence of energy levels has the equal spacing ℏ𝜔 postulated 

by Planck in 1900.  

…(6.16) 

 

…(6.17) 

 

…(6.18) 

 

…(6.19) 

 

…(6.20) 

 



• It is also in agreement with the quantization rules of the old quantum theory.  

• Unlike old quantum theory, the ground state energy is not zero, but is 

𝐸0 =
1

2
ℏ𝜔 

This is called the zero-point energy. 

• The eigenvalues (6.20) are nondegenerate, because for each value of the 

quantum number n there exists only one eigenfunction. 

 

 

6.2 The Hermite Polynomials 

Substituting 𝜆 = 2𝑛 + 1 in Equation (6.12), we get 

𝐻𝑛
′′(𝑦) − 2𝑦𝐻𝑛

′ (𝑦) + 2𝑛𝐻𝑛(𝑦) = 0 

The polynomial 𝐻𝑛(𝑦) of order n that is a solution of this equation is called the nth 

Hermite polynomial.  

We record here some important properties Hermite polynomial. 

Recurrence Relations 

𝐻𝑛
′ = 2𝑛𝐻𝑛−1 

𝐻𝑛+1 = 2𝑦𝐻𝑛 − 2𝑛𝐻𝑛−1 

Generating Function 

…(6.21) 

 

…(6.22) 

 

 

…(6.23b) 

 

 

…(6.23a) 

 

 



The function 

𝐺(𝑦, 𝑠) = 𝑒−𝑠2+2𝑠𝑦 

is called the generating function of Hermite polynomials. It can be shown that 

𝑒−𝑠2+2𝑠𝑦 = ∑
𝐻𝑛(𝑦)

𝑛!
𝑠𝑛

∞

𝑛=0

 

Rodrigues’ Formula 

The Hermite polynomials can be evaluated from the following formula: 

𝐻𝑛(𝑦) = (−1)𝑛𝑒𝑦2 𝑑𝑛

𝑑𝑦𝑛
(𝑒−𝑦2

) 

The first few Hermite polynomials are: 

𝐻0(𝑦) = 1 

𝐻1(𝑦) = 2𝑦 

𝐻2(𝑦) = 4𝑦2 − 2 

𝐻3(𝑦) = 8𝑦3 − 12𝑦 

𝐻4(𝑦) = 16𝑦4 − 48𝑦2 + 12 

𝐻5(𝑦) = 32𝑦5 − 160𝑦3 + 120𝑦 

 

 

Orthogonality 

If 𝐻𝑛(𝑦) and 𝐻𝑚(𝑦) are Hermite polynomials of orders n and m respectively, then 

∫ 𝑒−𝑦2
𝐻𝑛(𝑦)𝐻𝑚(𝑦)

∞

−∞

𝑑𝑦 = 0                 𝑛 ≠ 𝑚 

For 𝑛 = 𝑚, it can be shown that 

∫ 𝑒−𝑦2
𝐻𝑛

2(𝑦) 𝑑𝑦

∞

−∞

= √𝜋2𝑛𝑛! 

…(6.24) 

 

 

…(6.25) 

 

 

…(6.26) 

 

 

…(6.27) 

 

 

…(6.28) 

 

 


